PHYSICAL REVIEW E, VOLUME 65, 026106
Traveling kinks in discrete media: Exact solution in a piecewise linear model
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We present an exact integral representation of a traveling kink solution in a reaction-diffusion equation with
a piecewise linear reaction function, complementing existence proofs and numerical observations of such
solutions in discrete excitable media. The kink speed is determined through a matching condition, and is
worked out explicitly in two limiting situations: the pinning limit, and the opposite limit of infinitely fast kink.
Results on the pinning limit agree with those in a recent paper by[Patsica D116, 176(1998]. The model
includes a “recovery parameter” for a possible extension to a discrete FitzHugh-Nagumo-type system.
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Nonlinear reaction-diffusion equations are used widely togral expressiorfor the traveling kink solution not only near
modelexcitable mediand the rich variety of patterns, kinks, the pinning transition but in thentire range of its existence.
pulses, and waves that such media support. While an extefhile the existence of traveling kink solutions in discrete
sive literature exists relating to these objects in one+eaction-diffusion equations has been rigorously demon-
dimensional(1D), 2D, and 3D continuous media, spatially strated, there does not exist in the literature any egant
discreteexcitable systems are less well-studied by comparistructionof the traveling kink solution. We bridge this gap in
son. It appears worthwhile to explore special features of patthe present paper in the framework of the PWL version.
terns and waves that show up in discrete models by contraS§tarting from the exact integral expression, we investigate
to continuous ones. As an analogy pertaining to a differenthe two limiting situations corresponding to the speed going
(nondissipativi context, one may point to the so-called dis- to zero (pinning transition and infinity (vanishingly small
crete breather solution that has been shown to occur roudhreshold, respectively, and derive in the former situation
tinely in discrete Hamiltonian lattices but is known to be rarethe principal results obtained by Fath. The latter, on the other
in continuous system@or a review, se¢1,2]). One possible hand, gives a result relating to the speed of the traveling kink
novelty in discrete dissipative systems relates togimaing  that our exact solution yields. The model additionally in-
of traveling kinks and pulses on a latti¢ginning is known cludes a “recovery variableiv for a possible extension to a
to be a feature of localized excitations in nondissipativemore complete FitzHugh-Nagumo-type model in a discrete
discrete media as well This feature of discrete reaction- medium. Results on such extension will be reported else-
diffusion systems has been fruitfully invoked to understandwhere.
diverse physical and biological phenomég®Ba7]. In this pa- More precisely, we consider the Nagumo mo¢Bl with
per we consider a 1D lattice with a scalar reaction variablghe piecewise linear reaction function
u, at lattice siten (n=0,+1,=2, . ..), thetime evolution of
the u,’'s being described by the reaction-diffusion system f(y=-u-w+6(u-a, @

discrete Nagumo equatipn
( 9 quatip where the “threshold” parametex and the recovery param-

du, eterw satisfy
FZD(UH+1—2Un+Un_1)+f(Un) (D>0)1 (1) -
O0<a<a, (3a)
where D is a coefficient coupling neighboring lattice sites —a<w<1l-a, (3b)

and f(u,) is a nonlinear bistable reaction function that we
specify below.

Zinner[8] gave a rigorous proof for the existence of trav-
eling front solutions of Eq(1) for appropriate values of the
coupling constanD. Keener[9] investigated the phenom-

and © stands for the Heaviside step function, whilds a
limiting value of the threshold parametar(see below. In a
more complete modely should be a dynamical variable, and
- : . ; not simply a parameter, and the traveling front would be
enon of pinning, or propagation failure in the context of ex'replaced by a travelingulsesolution. For the present, how-

citability of the heart muscle, while Erneux and Nicdli] - P .
. " T L " ever,w is a parameter satisfying inequalig§b) and we seek
studied the critical behavior near the pinning transition. More b fying inequalitgo)

) . . "~ ~a traveling kink solution of the form
recently, Fath[11] investigated a discrete Nagumo-like g

model with a piecewise linedPWL) reaction functiorf(u), un(t)=9(2), (43
describing a number of exact limiting characteristics of the
traveling front(“kink” ) solution near the pinning transition = yt+n. (4b)

in a perturbative analysis. In the following, we consider a
similar PWL version of the discrete Nagumo equation andWe look upony as the “speed” of the kink and calculate it in
generalize Fath’s work by way of constructing @xact inte- terms of the parameters of the model while at the same time
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obtaining the functiorg describing the profile of the kink in and can be described in terms of a sequence of transfer ma-
terms of the kink variabl€. In the context of any specific trices. As an alternative approach, one has a matrix equation
solution, and withf given by the PWL form(2), Eq. (1) is
actually a linear equation for the kink variablelying in
specific intervals. The transition from any one of these inter
vals to an adjacent one corresponds to at least one af,the
crossing the valuei,=a. Hence, in such an interval, the
desired solutioru,(t) can be written as a linear combination
of basicsolutions.The kink solution we seek corresponds toW is a similar bi-infinite column, with

A=T 1w, (10)
‘whereA is a bi-infinite column

A=col(...a_,,a_1,a9,25,8, ...), (13)

9(5)=afor £=0, (52 W,=—1+w (n=0), (129
g({)=afor (=0, (5b) OF
g(¢)<a for ¢<O0. (50) =w (n<0), (12b)

) ) ) and the matrixT has element3;; given by
This means, in particular,

Tii:_(2D+1)! Ti,i—lzTi—l,i:D (i=0,i1,i2,...),

u,(0)>a for n>0, (6a)
(13
u,(0)=a for n=0, (6b) _ _ _ _ _
all otherT;;’s being zero. It is a simple matter to invert this
u,(0)<a for n<0. (6c)  tridiagonal matrix subject to the requirement that elements of

T~ do not increase unboundedly, a requirement that corre-

Moreover, for 0<t<<1/y, we have sponds to the boundary conditions

f(uy)=—u,—w+1 (n=0), (73 ap—(1-w) asp— (143
or ap— —W asp— —, (14b
——u,—w (n<0). (7h) ~ consistent with the kink solution we are looking for. The

elements off ! are given by

One can now obtain the basic solutions in this time interval 1—

and obtain a superposition such that, on using appropriate (-1, ifk:(Til)ifki:__’y'yk (k=0,1,2, ...,
matching conditions and on transforming suitably frgnm ' ’ 1+y

to the kink variableZ, the required kink solution is arrived at. (15
Using Egs.(7a) and (7b) in Eqg. (1) one obtains a linear wherey is the solution of

inhomogeneous system of equations for the time interval O

<t<lly, 1
Y=|2+5|r+1=0, (16)
du,
W=D(un+1—2un+un_l)—un—w+6(n). ®) satisfying|y|<1 [recall from Eq.(1) thatD>0], i.e.,

Thus the variables
vty =u,—a,, (99
satisfy the homogeneous system

duv,
dt

=D(vn+1tvn-1)—(2D+ vy, (9b)

where thea,’s satisfy
D(ap+1—2ap+an-_1)=ay+w—0(n), (90

and constitute the fixed point of the linear systé@. It
helps to recognize that the,'s need not satisfy Eqg6a),

1 1 1 1 1
=155 Vb " ape) (47

With T~ obtained above, Eq10) gives the columrA

ap=1—w—L P (p=0),

1+y
(183
or,
_ 1 -p
=—w+ m (p<0).
(18b

(6b), and(60), which, indeed, they cannot, since these wouldwe now turn to Eq(9b) and set up the basic solutions re-
then constitute a stationary kink solution and would excludeferred to above. A typical basic solution represents the linear
a propagating kinksee[11]). The sequenca, satisfying Eq.  evolution of a mode of the form'"?. As can be seen from
(90) constitute a trajectory of an inhomogeneous mappingsq. (9b), all such modes decay with time, with the decay
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rates depending o (0<#<). In other words, a typical where we have introduced for notational convenience

decaying mode looks ae%e M and the solution for

v,(t) in any appropriat€ interval involves a linear super- = 2D+1 (253
position of these. The full solution far,(t) for all { would x
then be obtained on using E@a and by matching together
these “pieces.” From Eq(5) we note that, for instance, 2D 2
v (<1). (25b)

u_,(t=0)<a while u_4(t>1/y)>a. In other words, ag
changes by unity, some, or other crosses the valae This

2D+1 p 1

means that the intervals mentioned above are simply seg-In arriving at Eq.(24) we have used the matching conditions

ments of unit length on thé axis, with{=0 as an endpoint

of one such segment, and in each of these inteiy@l? is a

(22b) and have thereby obtained all the ingredients of the
exact integral expressiof19) excepting the “speed’y (or

linear superposition indicated above. Using the reality ofequivalently,) for which we use Eq(22a to obtain

g({) one is led to the following form:

g(§)=ap+fﬂ[b(0)eip(’+b*(0)e*ip0]efx<e>(zfp)d0,
0

(19
wherep=[{], the integer part of, andb(6) (0O<6=<m) is

1 (2nm deo
2mJo (1—vcosh)(1—e e r1-vcoso))

=—(2D+1)(a—ay), (26)

which determineg. (hencey) implicitly.

to be determined from matching conditions. In order to make aq an application of the basic formuléa4) and (26), we

Eq. (19 satisfy Eq.(1) we consideruy(t) for p<xt(=¢)
<(p+1). On substitution one finds that the decay nat®@)
satisfy

—xN(0)=2D cosf—(2D+1). (20

We now impose the boundary conditigf0)=0 (this just

now consider two opposite limits relating to a propagating
kink: propagation with infinitely large speed and that with
vanishingly small speed. The latter is referred to as propaga-
tion failure orpinning With D fixed, we considexy—0, i.e.,
u—o0, in which case the integral in E§26) can be evalu-
ated[using Eq.(18a with p=0] and one finds that for given

amounts to having the kink located at a chosen lattice poinyalues of the coupling constabtand recovery parameter
att=0; in the present context this simplifies the calculationPinning occurs as the threshold parametés made to ap-

for obtaining the exact form of the kinkand the continuity
conditions

g(n7)=g(n") (p=0,+1,+2,...),

where (7) and (0*) refer to values off approachingn
from the left and from the right, respectively. Wit given
by Egs. (189 and (18b, Eg. (19 gives (p=0,*1,
*+2,...)

(21)

a0+J:}b(ey+b*(m]de:a, (229
ap+1£:[b(0)em94—b*(e)e’m”]e’*(”de
::ap+1+—J;ﬂ[b(e)éaem94—b*(a)e‘iae‘mo]da.
(22b)

We can defineb(6) over the entire interval from 0 to2
through the reality condition

b(2m—0)=b*(0) (0=0<m). (23

Then, using Eq918a and(18b) in Eq. (22b) one finds after
some algebra,

1 1 1 1
27 2D+1 1—vcosh 1 — g i0g—r(1-vcoso)’
(24)

b(6)=—

proach the limiting valudthe “pinning limit™)

1 . M1
- Vi1+4D//|

a=-w+>
2

(27)

confirming the result obtained by Fafhl] who calculated
the pinning threshold in the special cage-0. The opposite
limit y—o (u=0) cannot, however, be taken in Eg6) in

a straightforward manner since the resulting integrand is sin-
gular at 6=0. However, separating the contribution of the
pole from the principal value one can evaluate the integral
easily and finds that the pulse speed goes to the limit

2D+1
1+y

=—(2D+1)(a—ap) (28a

a— —Ww. (28b)

Having obtained the two limits, we seek for asymptotic
expressions for small and largerespectively. The left hand
side of Eq.(26) [we denote this by(u,D)] is first converted
to a contour integral over the unit circle

-n
(wD)= — S 3€d_z—z e~ Mug(nur/2)[z+ (1/2)]
207 Z 1 Z+Zfl
yHy !

(29

in which the last factor is the generating function for the
Bessel functions with imaginary argumgig]
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FIG. 1. Variation of kink speeg with thresh-
old parametem, as computed numerically from
Eq. (26); D=2.0, w=0; for these parameter val-
ues, the pinning limit isa=0.3333[Eq. (27)]
while the kink speed goes to infinity @as—0.

kink speed
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threshold

I (nuv)=e ""23 (inuv). (300  using the series expansion fo(x), which thereby leads to
the corresponding kink speed
The residues at the poles=y andz=0 can now be evalu-
ated to yield 1+2D ©?D

— _ 3

. ] (wD)= 1~ 2@+ TOW), (323

1+y B
(wD)=1—7 2 e ™| In(nup)+ 2 Y nsp(nu) \/T
= =
x=\/|=——|. (32b)
2(a+w)

Fn-p(nuw)]]. 31 In a similar manner, we look for the asymptotic expression

for the speed close to the pinning linG&7). Sincew is large
Substituting Eq.(31) in Eq. (26) we obtain another exact here, we invoke the asymptotic expression for Bessel func-
form of the equation determining the speed of the travelingions with large argument. Noting thai<1 , it is easily seen
kink. that the term witm=0 in Eq.(31) dominates over all other
As an application of EQ.(31) we give below the terms, the next approximant being the one with 1. With
asymptotic expression fdfu,D) with u~0 (a+w=0) by these two terms retained in the sum, one obtains, for large

FIG. 2. Kink propagation. The initial profile
was computed from Eq919) and (24) for D
=2,w=0, a=0.1667. The system was then al-
lowed to evolve by Eqgs(1) and (2) up tot
=3.0; the final profile is found to be simply a
b translated version of the initial profile consistent
with Eqg. (19) and the amount of translation is
exactlyyt wherey=1.9472 as obtained from Eqg.
. (24).

o
[
T

order parameter

o
S
T

final profile

initial profile

site index
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y e w(l-v) initial one, the amount of translation being entirely consistent
a=—w+ 1 (33)  with the speed computed from E@6).
Y N2mpv In summary, we have obtained an exact integral expres-

and, using Eq(27) for the pinning limit @) of the threshold ~ sion for the traveling kink solution in a PWL version of the
parametem, one gets, foa~a,

discrete Nagumo equation and have derived an exact implicit

relation determining the kink speed. Numerical integration of

\/;efl/x: ‘/47,.[)(5_3), (34) the evolution equation as also a recent work by Hath

corroborate these results. The inclusion of a recovery param-

in conformity with the result obtained by Faf1]. eter in the model allows one to obtain pulse solutions as
Figure 1 shows the variation of kink speed with thresholde|. This will be reported in a future communication.

a (for fixed D, w) as computed from Eg26), while Fig. 2
depicts the propagation of an initial profile chosen in accor- One of us(P.M.) acknowledges financial support from the

dance with Egs(19) and (24). The profile was made to Council of Scientific and Industrial Research, India. Thanks
evolve through Egs(l) and (2) for a given time and one are due to Subhendu Panda for help in several essential

finds that the final profile is indeed a translated version of the@espects.
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