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Traveling kinks in discrete media: Exact solution in a piecewise linear model
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We present an exact integral representation of a traveling kink solution in a reaction-diffusion equation with
a piecewise linear reaction function, complementing existence proofs and numerical observations of such
solutions in discrete excitable media. The kink speed is determined through a matching condition, and is
worked out explicitly in two limiting situations: the pinning limit, and the opposite limit of infinitely fast kink.
Results on the pinning limit agree with those in a recent paper by Fath@Physica D116, 176~1998!#. The model
includes a ‘‘recovery parameter’’ for a possible extension to a discrete FitzHugh-Nagumo-type system.
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Nonlinear reaction-diffusion equations are used widely
modelexcitable mediaand the rich variety of patterns, kinks
pulses, and waves that such media support. While an ex
sive literature exists relating to these objects in o
dimensional~1D!, 2D, and 3D continuous media, spatial
discreteexcitable systems are less well-studied by comp
son. It appears worthwhile to explore special features of p
terns and waves that show up in discrete models by con
to continuous ones. As an analogy pertaining to a differ
~nondissipative! context, one may point to the so-called di
crete breather solution that has been shown to occur
tinely in discrete Hamiltonian lattices but is known to be ra
in continuous systems~for a review, see@1,2#!. One possible
novelty in discrete dissipative systems relates to thepinning
of traveling kinks and pulses on a lattice~pinning is known
to be a feature of localized excitations in nondissipat
discrete media as well!. This feature of discrete reaction
diffusion systems has been fruitfully invoked to understa
diverse physical and biological phenomena@3–7#. In this pa-
per we consider a 1D lattice with a scalar reaction varia
un at lattice siten (n50,61,62, . . . ), thetime evolution of
the un’s being described by the reaction-diffusion syste
~discrete Nagumo equation!

dun

dt
5D~un1122un1un21!1 f ~un! ~D.0!, ~1!

where D is a coefficient coupling neighboring lattice site
and f (un) is a nonlinear bistable reaction function that w
specify below.

Zinner @8# gave a rigorous proof for the existence of tra
eling front solutions of Eq.~1! for appropriate values of the
coupling constantD. Keener@9# investigated the phenom
enon of pinning, or propagation failure in the context of e
citability of the heart muscle, while Erneux and Nicolis@10#
studied the critical behavior near the pinning transition. Mo
recently, Fath @11# investigated a discrete Nagumo-lik
model with a piecewise linear~PWL! reaction functionf (u),
describing a number of exact limiting characteristics of
traveling front~‘‘kink’’ ! solution near the pinning transitio
in a perturbative analysis. In the following, we consider
similar PWL version of the discrete Nagumo equation a
generalize Fath’s work by way of constructing anexact inte-
1063-651X/2002/65~2!/026106~5!/$20.00 65 0261
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gral expressionfor the traveling kink solution not only nea
the pinning transition but in theentire range of its existence
While the existence of traveling kink solutions in discre
reaction-diffusion equations has been rigorously dem
strated, there does not exist in the literature any exactcon-
structionof the traveling kink solution. We bridge this gap i
the present paper in the framework of the PWL versio
Starting from the exact integral expression, we investig
the two limiting situations corresponding to the speed go
to zero ~pinning transition! and infinity ~vanishingly small
threshold!, respectively, and derive in the former situatio
the principal results obtained by Fath. The latter, on the ot
hand, gives a result relating to the speed of the traveling k
that our exact solution yields. The model additionally i
cludes a ‘‘recovery variable’’w for a possible extension to
more complete FitzHugh-Nagumo-type model in a discr
medium. Results on such extension will be reported e
where.

More precisely, we consider the Nagumo model~1! with
the piecewise linear reaction function

f ~u!52u2w1U~u2a!, ~2!

where the ‘‘threshold’’ parametera and the recovery param
eterw satisfy

0,a,ã, ~3a!

2a,w,12a, ~3b!

and U stands for the Heaviside step function, whileã is a
limiting value of the threshold parametera ~see below!. In a
more complete model,w should be a dynamical variable, an
not simply a parameter, and the traveling front would
replaced by a travelingpulsesolution. For the present, how
ever,w is a parameter satisfying inequality~3b! and we seek
a traveling kink solution of the form

un~ t !5g~z!, ~4a!

z5xt1n. ~4b!

We look uponx as the ‘‘speed’’ of the kink and calculate it i
terms of the parameters of the model while at the same t
©2002 The American Physical Society06-1
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obtaining the functiong describing the profile of the kink in
terms of the kink variablez. In the context of any specific
solution, and withf given by the PWL form~2!, Eq. ~1! is
actually a linear equation for the kink variablez lying in
specific intervals. The transition from any one of these in
vals to an adjacent one corresponds to at least one of theun’s
crossing the valueun5a. Hence, in such an interval, th
desired solutionun(t) can be written as a linear combinatio
of basicsolutions.The kink solution we seek corresponds

g~z!.a for z.0, ~5a!

g~z!5a for z50, ~5b!

g~z!,a for z,0. ~5c!

This means, in particular,

un~0!.a for n.0, ~6a!

un~0!5a for n50, ~6b!

un~0!,a for n,0. ~6c!

Moreover, for 0,t,1/x, we have

f ~un!52un2w11 ~n>0!, ~7a!

or

52un2w ~n,0!. ~7b!

One can now obtain the basic solutions in this time inter
and obtain a superposition such that, on using appropr
matching conditions and on transforming suitably fromt, n
to the kink variablez, the required kink solution is arrived a
Using Eqs.~7a! and ~7b! in Eq. ~1! one obtains a linea
inhomogeneous system of equations for the time interva
,t,1/x,

dun

dt
5D~un1122un1un21!2un2w1U~n!. ~8!

Thus the variables

vn~ t !5un2an , ~9a!

satisfy the homogeneous system

dvn

dt
5D~vn111vn21!2~2D11!vn , ~9b!

where thean’s satisfy

D~an1122an1an21!5an1w2U~n!, ~9c!

and constitute the fixed point of the linear system~8!. It
helps to recognize that thean’s need not satisfy Eqs.~6a!,
~6b!, and~6c!, which, indeed, they cannot, since these wo
then constitute a stationary kink solution and would exclu
a propagating kink~see@11#!. The sequencean satisfying Eq.
~9c! constitute a trajectory of an inhomogeneous mapp
02610
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and can be described in terms of a sequence of transfer
trices. As an alternative approach, one has a matrix equa

A5T21W, ~10!

whereA is a bi-infinite column

A5col~ . . . a22 ,a21 ,a0 ,a1 ,a2 , . . . !, ~11!

W is a similar bi-infinite column, with

Wn5211w ~n>0!, ~12a!

or

5w ~n,0!, ~12b!

and the matrixT has elementsTi j given by

Tii 52~2D11!, Ti ,i 215Ti 21,i5D ~ i 50,61,62, . . . !,

~13!

all otherTi j ’s being zero. It is a simple matter to invert th
tridiagonal matrix subject to the requirement that elements
T21 do not increase unboundedly, a requirement that co
sponds to the boundary conditions

ap→~12w! asp→` ~14a!

ap→2w asp→2`, ~14b!

consistent with the kink solution we are looking for. Th
elements ofT21 are given by

~T21! i ,i 2k5~T21! i 2k,i52
12g

11g
gk ~k50,1,2, . . .!,

~15!

whereg is the solution of

g22S 21
1

D Dg1150, ~16!

satisfyingugu,1 @recall from Eq.~1! that D.0#, i.e.,

g511
1

2D
2AS 1

D
1

1

4D2D . ~17!

With T21 obtained above, Eq.~10! gives the columnA

ap512w2
g

11g
gp ~p>0!,

~18a!

or,

52w1
1

11g
g2p ~p,0!.

~18b!

We now turn to Eq.~9b! and set up the basic solutions r
ferred to above. A typical basic solution represents the lin
evolution of a mode of the formeinu. As can be seen from
Eq. ~9b!, all such modes decay with time, with the dec
6-2
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rates depending onu (0<u<p). In other words, a typica
decaying mode looks aseinue2l(u)t and the solution for
vn(t) in any appropriatez interval involves a linear super
position of these. The full solution forun(t) for all z would
then be obtained on using Eq.~9a! and by matching togethe
these ‘‘pieces.’’ From Eq.~5! we note that, for instance
u21(t50),a while u21(t.1/x).a. In other words, asz
changes by unity, someun or other crosses the valuea. This
means that thez intervals mentioned above are simply se
ments of unit length on thez axis, withz50 as an endpoin
of one such segment, and in each of these intervalsg(z) is a
linear superposition indicated above. Using the reality
g(z) one is led to the following form:

g~z!5ap1E
0

p

@b~u!eipu1b* ~u!e2 ipu#e2l(u)(z2p)du,

~19!

wherep5@z#, the integer part ofz, andb(u) (0<u<p) is
to be determined from matching conditions. In order to ma
Eq. ~19! satisfy Eq.~1! we consideru0(t) for p,xt(5z)
,(p11). On substitution one finds that the decay ratel(u)
satisfy

2xl~u!52D cosu2~2D11!. ~20!

We now impose the boundary conditiong(0)50 ~this just
amounts to having the kink located at a chosen lattice p
at t50; in the present context this simplifies the calculati
for obtaining the exact form of the kink! and the continuity
conditions

g~n2!5g~n1! ~p50,61,62, . . . !, ~21!

where (n2) and (n1) refer to values ofz approachingn
from the left and from the right, respectively. Withap given
by Eqs. ~18a! and ~18b!, Eq. ~19! gives (p50,61,
62, . . . )

a01E
0

p

@b~u!1b* ~u!#du5a, ~22a!

ap1E
0

p

@b~u!eipu1b* ~u!e2 ipu#e2l(u)du

5ap111E
0

p

@b~u!eiueipu1b* ~u!e2 iue2 ipu#du.

~22b!

We can defineb(u) over the entire interval from 0 to 2p
through the reality condition

b~2p2u!5b* ~u! ~0<u<p!. ~23!

Then, using Eqs.~18a! and~18b! in Eq. ~22b! one finds after
some algebra,

b~u!52
1

2p

1

2D11

1

12n cosu

1

12e2 iue2m(12n cosu)
,

~24!
02610
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where we have introduced for notational convenience

m[
2D11

x
, ~25a!

n[
2D

2D11
5

2

g1g21
~,1!. ~25b!

In arriving at Eq.~24! we have used the matching condition
~22b! and have thereby obtained all the ingredients of
exact integral expression~19! excepting the ‘‘speed’’x ~or
equivalently,m) for which we use Eq.~22a! to obtain

1

2pE0

2p du

~12n cosu!~12e2 iue2m(12n cosu)!

52~2D11!~a2a0!, ~26!

which determinesm ~hencex) implicitly.
As an application of the basic formulas~24! and~26!, we

now consider two opposite limits relating to a propagati
kink: propagation with infinitely large speed and that wi
vanishingly small speed. The latter is referred to as propa
tion failure orpinning. With D fixed, we considerx→0, i.e.,
m→`, in which case the integral in Eq.~26! can be evalu-
ated@using Eq.~18a! with p50# and one finds that for given
values of the coupling constantD and recovery parameterw
pinning occurs as the threshold parametera is made to ap-
proach the limiting value~the ‘‘pinning limit’’ !

ã52w1
1

2 F12AS 1

114D D G , ~27!

confirming the result obtained by Fath@11# who calculated
the pinning threshold in the special casew50. The opposite
limit x→` (m50) cannot, however, be taken in Eq.~26! in
a straightforward manner since the resulting integrand is
gular atu50. However, separating the contribution of th
pole from the principal value one can evaluate the integ
easily and finds that the pulse speed goes to` in the limit

2D11

11g
52~2D11!~a2a0! ~28a!

i.e.,

a→2w. ~28b!

Having obtained the two limits, we seek for asympto
expressions for small and largem respectively. The left hand
side of Eq.~26! @we denote this byI (m,D)# is first converted
to a contour integral over the unit circle

I ~m,D !5
1

2ip (
n

R dz

z

z2n

12
z1z21

g1g21

e2nme(nmn/2)[z1(1/z)] ,

~29!

in which the last factor is the generating function for t
Bessel functions with imaginary argument@12#
6-3
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FIG. 1. Variation of kink speedx with thresh-
old parametera, as computed numerically from
Eq. ~26!; D52.0, w50; for these parameter val

ues, the pinning limit isã50.3333 @Eq. ~27!#
while the kink speed goes to infinity asa→0.
t
in

ion

nc-

r

I r~nmn!5e2ri p/2Jr~ inmn!. ~30!

The residues at the polesz5g andz50 can now be evalu-
ated to yield

I ~m,D !5
11g2

12g2 (
n50

`

e2nmS I n~nmn!1 (
p51

`

gp@ I n1p~nmn!

1I n2p~nmn!# D . ~31!

Substituting Eq.~31! in Eq. ~26! we obtain another exac
form of the equation determining the speed of the travel
kink.

As an application of Eq.~31! we give below the
asymptotic expression forI (m,D) with m'0 (a1w'0) by
02610
g

using the series expansion forI r(x), which thereby leads to
the corresponding kink speedx

I ~m,D !5
112D

11g
2

m2D

2~2D11!
1O~m3!, ~32a!

x'AS D

2~a1v! D . ~32b!

In a similar manner, we look for the asymptotic express
for the speed close to the pinning limit~27!. Sincem is large
here, we invoke the asymptotic expression for Bessel fu
tions with large argument. Noting thatn,1 , it is easily seen
that the term withn50 in Eq. ~31! dominates over all othe
terms, the next approximant being the one withn51. With
these two terms retained in the sum, one obtains, for largem,
l-

nt
s
.

FIG. 2. Kink propagation. The initial profile
was computed from Eqs.~19! and ~24! for D
52, w50, a50.1667. The system was then a
lowed to evolve by Eqs.~1! and ~2! up to t
53.0; the final profile is found to be simply a
translated version of the initial profile consiste
with Eq. ~19! and the amount of translation i
exactlyxt wherex51.9472 as obtained from Eq
~24!.
6-4
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a52w1
g

11g
2

e2m(12n)

A2pmn
, ~33!

and, using Eq.~27! for the pinning limit (ã) of the threshold
parametera, one gets, fora'ã,

Axe21/x5A4pD~ ã2a!, ~34!

in conformity with the result obtained by Fath@11#.
Figure 1 shows the variation of kink speed with thresh

a ~for fixed D, w) as computed from Eq.~26!, while Fig. 2
depicts the propagation of an initial profile chosen in acc
dance with Eqs.~19! and ~24!. The profile was made to
evolve through Eqs.~1! and ~2! for a given time and one
finds that the final profile is indeed a translated version of
J.

r,
-

02610
r-

e

initial one, the amount of translation being entirely consist
with the speed computed from Eq.~26!.

In summary, we have obtained an exact integral expr
sion for the traveling kink solution in a PWL version of th
discrete Nagumo equation and have derived an exact imp
relation determining the kink speed. Numerical integration
the evolution equation as also a recent work by Fath@11#
corroborate these results. The inclusion of a recovery par
eter in the model allows one to obtain pulse solutions
well. This will be reported in a future communication.

One of us~P.M.! acknowledges financial support from th
Council of Scientific and Industrial Research, India. Than
are due to Subhendu Panda for help in several esse
respects.
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